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Abstract

A sort of singularities for the matric and matrix variate t distributions are studied
and their corresponding densities are derived. Finally, an application is given in the
context of sensitivity analysis.
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1 Introduction

The multivariate t distribution has been studied by several authors. An excel-
lent compendium of that topic can be found in Kotz and Nadarajah (2004).

Recall that the r-dimensional t distribution with n degrees of freedom , mean
vector µ ∈ <r, and positive definite correlation matrix R ∈ <r×r has the
following two representations, see Kotz and Nadarajah (2004, pp. 2-7),
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• t = S−1Y + µ; (1)

where Y ∼ Nr(0,Σ), i.e. Y is a non-singular r-dimensional normal random
vector with mean 0 and positive definite covariance matrix Σ, Σ > 0; and
nS/σ2 ∼ χ2(n), independent of Y, it is the chi-squared random variable
with n degrees of freedom.

• t =
(
V1/2

)−1
Y + µ; (2)

where Y ∼ Nr(0, nIr) is independent of V, Ir is the r-dimensional identity
matrix, V1/2 is the symmetric square root of V, i.e.

V1/2V1/2 = V ∼ Wm

(
n + r − 1,R−1

)

and Wr(n,Σ) is the non-singular Wishart distribution with n degrees of
freedom n and positive definite matrix parameter Σ.

Now, the matricial versions of these representations are given next:

• For the first generalisation assume that Y ∼ Nm×r(0, Im ⊗Σ) (Muirhead,
1982, pp. 89-80), then T ∈ <m×r is defined similar to (1), but µ ∈ <m×r and
the corresponding density is called the matrix-variate non-singular t distri-
bution, see Fang and Anderson (1990, p. 208), Sutradhar and Ali (1989)
and Gupta and Varga (1993, p. 76), among others.

• For the generalisation of (2), assume that Y ∼ Nm×r(0, Im⊗nIr), then the
density of T ∈ <m×r is called the non singular matricvariate t distribution,
see Dickey (1967), Press (1982, pp. 138-141), Box and Tiao (1972, pp. 441-
448) and Kotz and Nadarajah (2004, Section 5.11).

Note that the rows of the matrices T′s have the same marginal distribution
in both representations, but the densities of the matrix T do not satisfy that
equality, see Dickey (1967) and Sutradhar and Ali (1989) among others.

A common problem in the matric and matrix variate t distributions arrives
when the matrix Y is singular. More explicitly, if the matrix Y ∈ <m×r

represents the information of m objects or observations where r variables
(characteristics) are evaluated per object, then, the singularity is due to the
following reasons: the rows (observations) and/or the columns (characteristics)
of the matrix Y are linearly dependent, see Dı́az-Garćıa et al. (1997) and
Dı́az-Garćıa and González-Faŕıas (2005). In addition, for the matricvariate
distribution we need to consider another class of singularity; it is when V is
positive semidefinite (V ≥ 0). From a practical point of view, this singularity
(V ≥ 0), can be explained by many reasons; for example, when the number
of observations is less that the number of characteristics (dimension) of the
problem, m < r, see Dı́az-Garćıa et al. (1997).

In any case, if the matrix Y and/or the matrix V are singular, then the matrix
T is singular, and the corresponding densities of the matric and matrix variate
distributions exist respect to the Hausdorff measure, see Billingsley (1986),
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Dı́az-Garćıa et al. (1997) and Dı́az-Garćıa and González-Faŕıas (2005). In the
case of the matrix-variate t distribution there is only a type of singularity as a
consequence of the singularity of Y. However, in the case of the matricvariate
t distribution we have the following cases:

T =





Non singular, V > 0, Y is non singular;

Singular 1, V > 0, Y is singular;

Singular 2, V ≥ 0, Y is non singular;

Double singular , V ≥ 0, Y is singular.

In this work we propose an expression for the double singular matricvariate t
distribution and as particular cases we find expressions for the non singular,
singular 1 and singular 2 matricvariate t distributions. Similarly, we propose
an expression for the singular matrix-variate t distribution. Finally, an ap-
plication of the singular matricvariate t distribution is proposed by studying
the generalised multivariate version of the externally studentised residual is
studied when the number of observations is less than the dimension of the
problem.

2 Double singular matricvariate t distribution

Given any symmetric matrix A, let A+ and A− be the Moore-Penrose in-
verse and any symmetric generalised inverse A, respectively, see Rao (1973).
If chi(A) denotes the i-th eigenvalue of the matrix A and we use the nota-
tion of Dı́az-Garćıa et al. (1997) for the singular matrix-variate normal and
Wishart and Pseudo-Wishart distributions, then we have:

Theorem 1 (Double singular matricvariate t distribution) Let T be the
random m× r matrix,

T =
(
V1/2

)+
Y + µ

where V1/2V1/2 = V ∼ Wq
m (n,Ξ), Ξ(: m ×m) ≥ 0 with rank(Ξ) = rχ ≤ m

and q = min(m,n); independent of Y ∼ Nm,r
Σ

m×r (0, Im ⊗ Σ), Σ(: r × r) ≥ 0
with rank(Σ) = r

Σ
≤ r. Then the singular random matrix T has the density,

c(m,n, q, q1, rχ , r
Σ
, rα)

r
Σ∏

i=1

chi(Σ)m/2

rχ∏

j=1

chj(Ξ)n/2

rα∏

l=1

chl

[
Ξ− + (T− µ)Σ−(T− µ)′

]−(n+r
Σ

)/2
(dT),(3)
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where

c(m,n, q, q1, rχ , r
Σ
, rα) =

πn(q−rχ )/2−(n+r
Σ

)(q1−rα )/2−mr
Σ

/2Γq1 [(n + r
Σ
)/2]

2(mr
Σ

+nrχ )/2−(n−r
Σ

)rα/2Γq[n/2]
, (4)

where q1 = min(m,n + r
Σ
), rα = rank [Ξ− + (T− µ)Σ−(T− µ)′] ≤ m, and

(dT) denotes the Hausdorff measure.

Proof : From Dı́az-Garćıa et al. (1997), the joint density of V and Y is

dFY,V(Y,V) ∝ |L|(n−m−1)/2 etr
(
−1

2

(
Ξ−V + YΣ−Y′)

)
(dY)(dV),

where etr(·) = exp(tr(·)) and the corresponding constant of proportionality is

c =
2−nrχ/2 πn(q−rχ )/2

(2π)mr
Σ

/2Γq[n/2]

r
Σ∏

i=1

chi(Σ)m/2

rχ∏

j=1

chj(Ξ)n/2

,

where V = H1LH′
1, is the nonsingular part of the spectral decomposition of V,

H1 is a q ×m semi-orthogonal matrix, and L = diag(l1, . . . , lq), l1 > · · · > lq.

First consider the transformation T =
(
V1/2

)+
Y =

(
V1/2

)+
(Y1, . . . ,Yr),

where Yj, j = 1, . . . , r are the columns of Y such that the Yj’s are in the

image of V1/2, then Y =
(
V1/2

)
T. Now make the change of variables Y =(

V1/2
)

(T− µ) then by Dı́az-Garćıa (2007),

(dY) = |L|rΣ/2(dT).

The joint density of T and V is given by

dFT,V(T,V) ∝ |L|(n+r
Σ
−m−1)/2

etr
(

1
2
(Ξ− + (T− µ)Σ−(T− µ)′)V

)(dT)(dV).

Integrating with respect to V ≥ 0 we have (see Dı́az-Garćıa et al. , 1997),

dFT(T) ∝ 2(n+r
Σ

)rα/2Γq1 [(n + r
Σ
)/2]

π(n+r
Σ

)(q1−rα )/2
rα∏

l=1

chl (Ξ− + (T− µ)Σ−(T− µ)′)(n+r
Σ

)/2

(dT),

and the result follows by noting that q1 = min(m,n + r
Σ
) and rα ≤ m is the

rank of the matrix (Ξ− + (T− µ)Σ−(T− µ)′). 2

Note that inside the singular 2 and double singular types there is a number of
particular cases of the matricvariate t distribution according to the singularity
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sources of the density of V, see Dı́az-Garćıa et al. (1997). Some of these
particular cases are obtained by the following substitutions:

(1) if rα = m, then

c(m,n, q, q1, rχ , r
Σ
, rα)

r
Σ∏

i=1

chi(Σ)m/2

rχ∏

j=1

chj(Ξ)n/2

∣∣∣Ξ− + (T− µ)Σ−(T− µ)′
∣∣∣
−(n+r

Σ
)/2

(dT).

(2) Case: Singular 1, then

c(m,n, m,m, m, r
Σ
,m)

r
Σ∏

i=1

chi(Σ)m/2 |Ξ|n/2

∣∣∣Ξ−1 + (T− µ)Σ−(T− µ)′
∣∣∣
−(n+r

Σ
)/2

(dT).

This distribution was obtained previously in an alternative way by Dı́az-
Garćıa and Gutiérrez-Jáimez (2006b).

(3) Case: Singular 2, in general we have

c(m,n, q, n + r, rχ , r,m)

|Σ|m/2

rχ∏

j=1

chj(Ξ)n/2

∣∣∣Ξ− + (T− µ)Σ−1(T− µ)′
∣∣∣
−(n+r)/2

(dT),

or in a particular case, when V has a nonsingular Pseudo-Wishart distri-
bution,

c(m,n, n, n + r,m, r,m)

|Σ|m/2 |Ξ|n/2

∣∣∣Ξ−1 + (T− µ)Σ−1(T− µ)′
∣∣∣
−(n+r)/2

(dT).

Observe that, the non singular case studied by Dickey (1967) and Box and
Tiao (1972, p. 439-447) is obtained as a particular case of Theorem 1, by
taking q = q1 = rχ = rα = m and r

Σ
= r,

Γm[(n + r)/2]

πmr/2|Γm[n/2]Σ|m/2 |Ξ|n/2

∣∣∣Ξ−1 + (T− µ)Σ−1(T− µ)′
∣∣∣
−(n+r)/2

(dT),

where (dT) is the Lebesgue measure.

3 Singular matrix-variate t distribution

In this section we study the density function of the singular matrix-variate t
distribution.
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Theorem 2 (Singular matrix-variate t distribution) Let T be the ran-
dom m× r matrix,

T = S−1Y + µ

where nS/σ2 ∼ χ2(n) is independent of Y ∼ N r
Θ

,r
Σ

m×r (0,Θ⊗Σ), Σ(: r×r) ≥ 0
with rank(Σ) = r

Σ
≤ r and rank(Θ) = r

Θ
≤ m. Then the T has the density,

π−g/2Γ[(n + g)/2]

Γ[n/2]
r
Σ∏

i=1

chi(Σ)r
Θ

/2

rχ∏

j=1

chj(Θ)r
Σ

/2

(
1 + trΘ−(T− µ)Σ−(T− µ)′

)−(n+g)/2 (dT),(5)

where g = r
Σ
r

Θ
and (dT) denotes the Hausdorff measure.

Proof : The joint density of Y and S is

dFY,S(Y, s) ∝ s(n−2)/2 exp
(
−1

2

(
s + trΘ−YΣ−Y′)

)
(dY)(ds),

where the corresponding constant of proportionality is

c1 =
1

2n/2(2π)r
Θ

r
Σ

/2Γ[n/2]

r
Σ∏

i=1

chi(Σ)r
Θ

/2

r
Θ∏

j=1

chj(Θ)r
Σ

/2

.

Let Y = S1/2(T− µ), then by Dı́az-Garćıa (2007), (dY ) = Sr
Θ

r
Σ

/2(dT ). The
joint density of Y and S is given by

dFT,S(Y, s) ∝ s(n+r
Θ

r
Σ
−2)/2

exp
(

1
2
(1 + trΘ−(T− µ)Σ−(T− µ)′) s

)(dT)(ds).

Integrating with respect to S and by using

∫

s>0

s(n+r
Θ

r
Σ
−2)/2 exp

(
−1

2

(
1 + trΘ−(T− µ)Σ−(T− µ)′

)
s
)

(ds)

= 2(n+r
Θ

r
Σ

)/2Γ[(n + r
Θ
r

Σ
)/2]

(
1 + trΘ−(T− µ)Σ−(T− µ)′

)−(n+r
Θ

r
Σ

)/2
,

give the required marginal density function for T. 2

Theorem 2 allows generalisations of the results in Sutradhar and Ali (1989)
and Fang and Anderson (1990, p. 208) to the singular matrix-variate case.
Also observe that this distribution can be obtained in an alterative way by
Theorem 1 in Dı́az-Garćıa and Gutiérrez-Jáimez (2006c), see also Dı́az-Garćıa
and González-Faŕıas (2005).

6



 
 
4 Application

The distributions of the certain classes of residuals associated to a multivariate
general linear model play a fundamental role in the context of sensitivity
analysis, see Caroni (1987) and Dı́az-Garćıa and Gutiérrez-Jáimez (2006a),
among many others.

Consider the multivariate general linear model

Y = XB + E, (6)

where X is the m × p (known) design matrix of rank r
X
≤ min(m, p) and

B is the p × r matrix of unknown parameters. We shall assume that E ∼
Nm×r(0, Im ⊗ Σ) with r × r unknown matrix of covariance Σ > 0. Also we
shall assume that

m ≤ r,

i.e. the number of observations is less than the dimension r.

The maximum likelihood or the least square estimator of XB is given by

X̂B ≡ XB̂ = X(X′X)−X′Y = XX+Y,

which is invariant for any generalised inverse of (X′X).

The covariance matrix Σ can be unbiasedly estimated by

Σ̂ =
1

(m− r
X
)
(Y −XB̂)′(Y −XB̂).

The matrix Σ̂ is, however, a singular random matrix of rank m − r
X

< r;

moreover, (m− r
X
)Σ̂ ∼ PWm−r

X
r ((m− r

X
),Σ).

The residual matrix is defined as Ê = Y − Ŷ = Y −XB̂ = (Im −XX+)Y =
(Im −H)Y, where H = XX+ is the orthogonal projector on the image of X.
Then Ê has a singular matrix-variate normal distribution of rank r(m− r

X
),

i.e. Ê ∼ N (m−r
X

),r
m×r (0, (Im − H) ⊗ Σ). Also, observe that the i-th row of Ê,

denoted as Êi, has a nonsingular r-variate normal distribution, i.e., Êi ∼
Nr(0, (1−hii)Σ), H = (hij), for all i = 1, · · · , n. Given that the Êi’s are linearly
dependent, we need to define the index I = {i1, · · · , ik}, with is = 1, · · · , n;
s = 1, · · · , k and k ≤ (n− r

X
), in such way that the vectors Êi1 , · · · , Êik ’s are
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linearly independent. Thus we write

ÊI =




Ê T
i1
...

Ê T
ik




. (7)

Observe that ÊI has a matrix-variate normal nonsingular distribution, more-
over ÊI ∼ Nk×p(0, (Ik −HI) ⊗ Σ). Here HI is obtained by deleting the row
and column of H non indexed by I.

A generalised multivariate version of the externally studentised residual when
the number of observations is less than the dimension (Σ̂ ≥ 0) is given by (see
Caroni (1987) for classical definition),

ui =
1√

1− hii

(
Σ̂

1/2
(i)

)+
Êi,

where Σ̂(i) is obtained by removing the i-th observation from the sample,
which is also r × r singular matrix of rank (m − r

X
− 1). Given the index I,

the following definition is established

uI = (Ik −HI)
−1/2ÊI

(
Σ̂

1/2
I

)+
,

where Σ̂I is obtained by removing the observations of the sample non indexed
by I.

Theorem 3 (Externally studentised residual) Under the general multi-
variate linear model (6), W = uI/

√
s, has a singular matricvariate t distri-

bution (singular 2), moreover

dFW(W) =
Γ(m−r

X
)[(m− r

X
)/2]

π(m−r
X

)(m−r
X
−r)/2+kr/2Γs[s/2]

|Ir + W′W|−(m−r
X

)/2
(dW).

where s = m− r
X
− k.

Proof : The demonstration follows from Theorem 1, by observing that W = T′,
(Ik−HI)

−1/2ÊI ∼ Nk×r(0, I⊗Σ) and that (m−r
X
−k)Σ̂I ∼ PW (m−r

X
−k)

r ((m−
r

X
− k),Σ). 2
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Conclusions

The singular matrix and matric variate t distribution are studied under a
number of singularities. Several particular interesting cases in the statistical
literature are proposed. In the same context, previously published results are
found as particular cases of the general densities derived in this paper. Finally,
some of these results are applied in the context of sensitivity analysis, specif-
ically, we study the joint distribution of the externally studentised residual.
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